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Plastic deformation of glassy amorphous 
polymers: influence of strain rate 
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The compressive deformation of glassy atactic polymethyl methacrylate has been studied 
in the temperature range 150 < T <  330 K as a function of applied strain rate. Special 
emphasis is given to the definition of an elementary activation rate, i.e. the characteristic 
frequency of the successful plastic deformation events. This determines the frequency at 
which the elastic counteraction of the medium to the nucleation of plasticity has to be 
taken into account, in order to ensure self-consistence of the kinetic and thermodynamic 
analysis of deformation previously proposed. 

1, Introduction 
The yielding phenomenon of glassy polymers 
generally results in the formation of localized 
shear bands, the degree of heterogeneity of which 
being strongly dependent on the past thermo- 
mechanical treatments the samples have under- 
gone. 

Though a distinction was formerly established 
between shear bands and diffuse zones [1], more 
precise structural observations revealed in both 
cases the existence of well-defined bands, either 
coarse or fine [2]. These bands originate from the 
nucleation and growth of shear nuclei past a 
critical size. The present approach describes the 
stress-aided thermally activated growth of these 
nuclei and the overcoming of energy barriers 
responsible for yielding. The thermodynamic 
and kinetic analysis developed [3] is aimed at 
establishing the characteristic features of the 
elementary mechanism, namely its energy and 
spatial extension. This requires a precise definition 
of concepts and activation parameters together 
with a careful examination of the corresponding 
experimental operational quantities. When express- 
ing the stress and temperature dependence of the 
strain rate in the form of a simple Arrhenius law: 

zXGa(o, T) 
= eo exp kT (1) 

it is of great importance to make a clear distinc- 

tion between the free energy AG a and the acti- 
vation enthalpy z2x/-/a, which means that the 
activation entropy AS a has also to be dealt with. 
This last term mainly originates from the tempera- 
ture dependence of the energy barrier through that 
of the elastic constants /J(T) in the temperature 
range investigated. Illustrations of the procedure 
have been given in the case of polystyrene (PS) 
and polymethyl methacrylate (PMMA) at a par- 
ticular strain rate [4, 5]. The results established the 
existence of two different deformation modes on 
either side of a critical temperature, T e. Since 
then, new implications of the theory have been 
introduced in the refinement of data treatment 
[6, 7] and it is the purpose of this paper to apply 
it to the influence of strain rate on the plastic 
deformation behaviour of PMMA. 

In a first section the essentials of the thermo- 
dynamic analysis are briefly recalled, the oper- 
ational parameters defined and their informational 
content checked in a self-consistent way. The next 
part details the experimental procedures and 
results. The deformation scheme obtained is 
discussed in the last section and data from the 
literature are incorporated which result in a quite 
reasonable agreement. 

2. Thermal activation analysis 
2.1. Thermodynamic analysis 
Owing to the relatively large relaxation times of 
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structural variations in the glassy state (rR ~> 
102sec), the stress-aided thermally activated 
growth of shear nuclei can be treated by standard 
quasi-equilibrium thermodynamics since charac- 
teristic time for the elementary deformation 
events ~'~ef are in the range 10 -3 to 10 -5 sec (see 
Section 2.2 below). 

We define as a state variable the entropic strain 
e s produced by uncoiling bonds within the shear 
nucleus, which is proportional to the nucleus size 
V. The polymer sample being considered in its 
whole, the sample average strain is thus defined 
as es=(V/VtoOAeo where g t o  t is the sample 
volume and Aeo is the elementary shear in the 
nucleus, a monomer cage parameter of order 
unity [8]. (Note that V might be used as well as 
a reaction variable.) Developments of the calcu- 
lation (see [3, 6, 7]) lead to an estimate of the free 
energy variation of the system (sample plus 
external sources of stress) during a reversible and 
isothermal variation de s under constant pressure, 
temperature and applied stress % conditions. 

We can thus define the Gibbs free energy of 
activation AG a as the integral over the barrier of 
the variation of the thermodynamic potential of 
the system, and as the most important result, 
explicitly its partial derivatives at constant pressure 
and structure, namely the entropy of activation 
ASa = -- (OAGa/~T)P, aa, struct, and the activation 
volume V a = - -  (OAaa/OCya)p, T, s t r u c t . '  

V a is directly related to the critical size of the 
shear nucleus V c and it reflects the spatial extent 
of the zone where monomer units undergo 
coherent thermal fluctuations. 

AS a is related to the temperature dependence 
of the elastic counteraction of the material to the 
growth of the nucleus. Assuming the correspond- 
ing energy to be proportional to the shear modulus 
p(T)  leads to an entropy increase due to the 
change of the vibrational spectra of molecules 
with temperature. Apart from the usual softening 
of spring-like intermolecular forces as temperature 
rises, a specific contribution to dp/dT in the case 
of polymeric materials comes from the drop of the 
shear modulus in the temperature range corre- 
sponding to the secondary mechanical relaxations 
(Tr T 7 . . . .  ), i.e. to the onset of local molecular 
movements on the chain. The resulting entropy 
term is much larger than that usually encountered 
in crystalline materials. 

At last the preponderance of these Hookean 
contributions is established, as compared to 

rubber-like terms originating from bond uncoiling 
[1, 6, 7]. Using these assumptions, the Gibbs free 
energy of activation is expressed in the following 
way [1,6, 7]. 

A G  a = ( Z ~ / a - [ - X O ' a V a ) ( 1 - - x )  -1 ( 2 )  

where 

x = T/It • dp/dT. 

AG a can also be deduced in a different manner 
by integrating its stress derivative Va: this implies 
building from AGa(Oa, T) a single variable func- 
tion which is independent of temperature. This is 
achieved by scaling AG a by the shear modulus and 
we finally obtain: 

AG a = ~ ~'~'a (0) 
. 0 J r  a Va(7"a) aT a (3) 

with the reduced variable ra=(Po /p ) ( r  a [3, 9] 
where ra(0) and Po refer to zero K. 

As far as suitable experimental information is 
available we are thus able to characterize the 
elementary deformation mechanism by its specific 
free energy of activation AG a and by its spatial 
extent V a. 

2.2. Deformation kinetics 
The macroscopic strain rate resulting from the 
expansion of shear nuclei past their critical con- 
figuration may be expressed from the general 
formulation of activated flow as: 

= NeoR (4) 

where N is the number of active sites and e0 the 
average deformation resulting from each successful 
event. 

The activation rate R characterizes the fraction 
of those nuclei that achieves expansion per unit 
time. R is the product of a frequency factor and a 
Boltzmann factor [10]: 

T) 1 R = UNexp-- [ kT  ' 

the second right-hand term expressing the prob- 
ability at equilibrium of a fluctuation in energy 
greater than AG a. 

Equations 1 and 4 thus give 

= Neo~'N e x p -  [ kT  

o r  

A G a =  k T l n ~ ) = a k T  
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which means that when a single mechanism is 
rate-controlling AG a is directly proportional to 
temperature under constant strain rate conditions. 

The activation rate R can be viewed as the 
characteristic frequency of the nucleation process, 
Pdef = R ,  or its inverse, Tale f = R  -1, as the charac- 
teristic time of the elementary event for plastic 
deformation. In a constant strain rate test, this 
time is a constant, and can be written as: 

"/'de f = PN 1 exp a = Neo~ -1 (5) 

For a typical value a--~20, and PN "~ 1012 s e c  -1 

[3, 6, 7], Zde~ = 5 X 10 -4 sec, which justifies the 
quasi-equilibrium treatment given in Section 2.1. 
The evaluation of this time turns out to be an 
essential step in the present analysis. 

A major aim of the analysis is to yield the 
Gibbs free energy characteristic of the process, i.e. 
AG a. As recalled in Section 2.1, this determination 
either from Equation2 or from Equation3 
requires independent knowledge of the tempera- 
ture dependence of the elastic constants in the 
form of the data (d In p/dT).  Hence the question 
arises of deciding first at which frequency Umo a 
the elastic response of the material should be 
taken. 

In previous attempts in the literature to des- 
cribe the yield behaviour of glassy polymers, either 
by nucleating disc-shaped shear zones [8], or by 
kinking a bundle of  molecular rods [11], the 
elastic response of the medium was simply taken 
at a frequency of 1 Hz for the ease of available 
experimental data and without further justifi- 
cation. We think this treatment is not grounded, 
and invalidate partly the experimental check of 
theoretical models. 

An alternative analysis of yielding by modified 
Ree-Eyring formulation correlated the yield 
stress behaviour to the dissipative component 
of the dynamic modulus through an ad hoc 
theological spring-and-dashpot analogue [12, 13]. 
Following this parameter fitting analysis, a "knee" 
can be defined on the curve of yield stress against 
temperature above which temperature alone is 
enough to activate the 13-processes involved in 
deformation (assumed to be in parallel with a- 
processes), that is to say above which /3 barriers 
become "transparent" to thermal activation and 
do not require any further aid of stress. Therefore 
the frequency of a "corresponding" dynamical 
test can be defined as that at which the ~-peak 
temperature is identical to the knee temperature 
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on the yield stress-temperature curve. Appli- 
cation to polycarbonate thus yields a characteristic 
frequency Umo a --~ 2.3 x 103 ~, as deduced from the 
deformation (and dynamical) parameters proposed 
by parameter fitting for this polymer. However, 
the above procedure relies entirely on the ad hoc 
rheological analogue introduced from the beginn- 
ing in the analysis on the basis of six fitting 
parameters without real physical meaning (e.g. 
very high values of frequency factors, activation 
volumes a priori stress independent, see [5] for 
discussion). Therefore the presented correlation 
appears to be somewhat artificial, and a more 
physically grounded determination is needed for 
the frequency Vrnod. 

The basic question of choosing the relevant 
frequency capable of describing correctly the 
elastic constants of the medium during the defect 
nucleation process, is not an obvious one. Let us 
put the physical problem in the following way. 
Suppose we watch over a given time the whole 
assembly of active shear nuclei trying to achieve 
growth just as coherent thermal fluctuations of 
chain segments create them at a time with a cer- 
tain size, and destroy them out the time after 
(when too small) with a trial frequency u N close. 
to the Debye frequency (Vy--~0.1~o [3].)As a 
first guess, one might think that the effective 
shear modulus to use in the opposing energy 
barrier should be that experienced during one 
trial, i.e. the shear modulus at frequency u N. 
However, most of these trials do not succeed 
- only one in a time "/-de f = R -1 does. During that 
time, any local movement of molecular segments 
of  the 6, 7 or /3 type as well, either in-chain or 
sideways but fast enough to occur between two 
successful events, will contribute a relaxed shear 
modulus to energy barriers. It is clear that the 
succeeding nuclei will be most likely to be located 
where barriers are thus lowered so that the shear 
modulus experienced by successful nuclei should 
be the same as that which would be measured at 
a frequency: 

Pmod = Pdef = R • ( N e 0 ) - l ~  (6)  

A practical problem arises then, since /"clef is 
not known a priori, and requires the introduction 
of b'rnod in order to be determined from thermo- 
dynamical analysis. An iterative procedure has 
therefore to be used until reasonable consistency 
is achieved, i.e. until the ratio Vdef /Umo d is much 
less than one decade. It can be represented 



schematically as follows: 

d~  (Pmodl) -+ AGa, = elkT-~ vde f 1 ~ Pmod2 

d___p~ (Pmod2) "-> AGa: = (~2 kT 
dT 

--->Pdef2 ~ P m o d 3 - ~ . -  �9 

In practice, as illustrated below, the obtaining 
of an optimized frequency is achieved in two or 
three steps. 

2.3. Opera t iona l  p a r a m e t e r s  
The usual method is to derive operational apparent 
quantities relating strain rate, applied stress and 
temperature at comparable structural states. On 
this last point a proper definition of the yield 
stress has been given elsewhere [4, 5]. 

Our interest concentrates on two parameters: 
the temperature sensitivity of the strain rate; and 
the stress sensitivity of the strain rate. These are 
generally defined in the following way [3]: 

A H o =  kT2( a ln----~e 1 
\ OT /aa, Struct" 

Vo : \ aO-a-lT,~. 

Introducing these expressions into Equation 1 one 
obtains: 

A H 0 =  kT2(a ln~0] + AGa+ TASa 
\ a T  /aa, struct" 

Vo = I~1~ ~Oa ]T, struct.-{- 

eo reflects the stress and temperature dependence 
of structure terms (density of active sites, size of 
nuclei); r is generally weakly temperature depen- 
dent, and if so remains negligible by comparison to 
the exponential term in Equation 1. 

This means that a determination of AH o at 
constant structure provides a reliable measure of 
the activation enthalpy: AH o ~ A H  a. The stress 
dependence of ~o is often described in the form of 
a power law e 0 ~ ( % - - a i )  ~ with n~<4 (for n 
values much higher, it is more reasonable to 
express the stress dependence in the exponential 
term). The structural parameter oi depicts the 
arrangement of defects, i.e. the past thermo- 
mechanical history. 

The operational activation volume can thus be 

written: 
nkT 

V o - + V  a 
Ga - -  0 i 

and the first term on the right-hand side may be 
important, especially at high temperature when 
the effective stress ea - ai is small. 

Vo is deduced from a stress relaxation test (see 
e.g. [5, 14]) and AHo either from a temperature 
jump at constant strain rate or from the expression 
z2xHo = -  TVo(Oea/OT)~,s truct .  by a combination 
of the operational activation volume and the slope 
of the curve of yield stress against temperature. 

We may sum up as follows: 
(1) The determination of AG a from Equation 2 

brings the first indication of a single rate-controlling 
mechanism. In such a case the plot of AG a against 
T is a straight line going through the origin. 

(2)The integration method of Equation3 
agrees with the above determination as long as the 
operational quantity Vo has the physical meaning 
of an activation volume, i.e. V0 ~- Va. The disagree- 
ment between the two routes indicates the critical 
temperature beyond which the stress dependence 
in the pre-exponential term is no more negligible. 

(3) The determination of the characteristic 
deformation frequency ensures a self-consistent 
evaluation of the entropy term and of AG a. 

(4) No adjustable parameter is involved in the 
present analysis. 

3. Experimental details and results 
3.1. Experimental procedure 
The PMMA used in this study was prepared by 
anionic polymerization at the Ecole d'Application 
des Hauts Polymeres, Strasbourg. Its molecular 
weight distribution, as deduced from GPC measure- 
ments is characterized by /1)w = 223 000 and a 
polydispersity p = 2.29. Its glass transition tem- 
perature is Tg = 380 K. Details of the compression 
moulding and annealing procedures have been 
given elsewhere [5]. The resulting material may 
thus be considered as well-annealed, with little 
ageing effects within the time allowed before 
deformation. 

Cylindrical samples were compression tested in 
an lnstron machine in the temperature range 
150<  T <  330K at constant applied strain rate 
10 -s sec -I < ~ < 10 -a sec -I.  Elastic modulus 
measurements were performed for frequencies 
varying from 1 to 103Hz. The 1 Hz data were 
obtained on a torsion pendulum at the ENSMA, 
Poitiers and data ranging from 7.8 to 103 Hz on 

441 



8"0 l 

-~ 7.5 ~ L ~ . . ~ _  ~ .  

�9 I k.z " ~ - . , ~  " \  

�9 7.8 H z " N ~ ' \  % .  

70 ,1.THz = ~  ~ 

2'oo 35o 3so 
T(K) 

the viscoelasticimeter - Metravib. The results are 
summarized in Fig. 1 in the form in ~ against T, 
since the quant i ty  of  interest is ( l / g )  x (d/J/tiT). 

3.2. Results 
The variation of  yield stress with temperature for 
three different strain rates is shown in Fig. 2. The 
lowest strain rate d = 3.5 x 10 -s sec -1 was used in 
the analysis previously published [5]. To avoid 
repeti t ion,  we merely recall here that it was shown 
in [5] that there was good agreement between 
determinations of  AG a by the two routes men- 

Figure 1 Variation of the shear modulus 
with temperature (logarithmic scale, ;~ in 
MPa). 

t ioned above, below T c ~ 200 K, with the result 
2xG a-~ 18 kT. The elastic modulus was taken at 
that time as usual, i.e. in the one cycle range, but 
it was already concluded that  a consistent analysis 
would involve measuring /a(T) in the kilocycle 
range since R =/~def = ~'N exp --c~ ~ 1 0  4 sec -1 . 

These data have thus been reconsidered using 
the more suitable measurements shown in Fig. 1. 
Using the shear modulus /J (T)  observed at 103 Hz 
gives finally the result illustrated in Fig. 3 where 
the Gibbs free energy of  activation exhibits two 
distinct behaviours in the temperature range 
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Figure 2 Variation of the yield stress with 
temperature at three different strain rates. 
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Figure 3 Variation of the Gibbs free 
energy of activation with tempera- 
ture (~ = 3.5 • 10-s sec-l). 

investigated: 

T < T e - - ~ 2 3 0 - + 1 0 K ; A G  a = a k T  a m 2 0  

T > T e ; A G  a = zXG m = 0.39 -+ 0 .03eV 

(m 38 kJ mo1-1) 

This plot gives a value Pdef ~--2 X 103Hz, in 
good agreement with the initial value for Umoa, 

Umo d = 103 Hz. 
For  the sake of  clarity, we illustrate now the 

procedures explained in Section 2 in the case of 
the highest strain rate, g = 7 x 10 .4 sec -1 . From 

the temperature variation of  yield stress in Fig. 2 
and that of  operational activation volume in Fig. 4 
we deduce the values of  Table ! with the elastic 
term ( t / # ) x  (d/a/dT) taken at 103 Hz. In a first 
step (not reproduced here, see e.g. [4, 5])  calcu- 
lation of  AG a from Equations 2 and 3 has estab- 
lished that the operational parameter V0 is equal 
to the true activation volume V a for T c ~ 250 K. 
Accordingly,  subsequent calculation leading to 
AGa, in Table I introduces V~ = Vo for T <  250 K 

T A B L E  I Activation parameters for Umod:103Hz. 
For PMMA e'p = 7 • I0 -4 sec -~ 

T o a AH o AGal 
(K) (MPa) (kJ too1 -~ ) (kJ tool 1 ) 

185 396 30.8 25 
204 360 33.7 27 
223 310 40.5 28.9 
242 258 53 32.7 
254 218 60.7 33.7 
273 176 65.5 30.8 
292 138 77 32.8 
326 90 92.5 27 

and the extrapolat ion along the dot ted  line on 
Fig. 4 for T >  250K.  Both AGa, and 2xGa: are 
obtained from Equation 2. 

The variation of AGa~ with temperature is 
shown in Fig. 5. Its low temperature part yields 
AGa~ ~--16kT, and at high temperatures ZXGm~ 
sensibly differs from the value obtained at ~ = 
3.5 x 10 -s sec- ' .  However, it seems rather doubt- 

ful from the increase of  T e with ~, and Equation 1, 
that ~ might also affect AG m. In fact one has 
to consider again the elementary activation fre- 

quency: Pdef= UN e x p - -  i6  --~ 100kHz, so that 
Pdef/Ume s ~ 100. The lack of  experimental methods 
available in our laboratory in the range 103 to 
106 Hz is fortunately solved by a recent work of  

Read [15]. 
Fig. 6 reproduces the variation of  the logarithm 

of  the shear modulus with temperature deduced 
from his data for different frequencies between 1 
and 106 Hz. Though imprecise, this plot permits 
us to estimate the temperature shift needed to 
superimpose the different curves. Comparing data 
at 7.8 and 103 Hz, gives a corresponding shift of  
3 5 - + 2 K  from our own measurements (Fig. 1), 
against 37 -+2K from Read's measurements 
(Fig. 6). This good agreement gives us confidence 
in using Fig. 6 to estimate the shifts AT valid for 
frequencies higher than 103 Hz and apply them to 
our data at 103Hz, so as to obtain data for fre- 
quencies u2 > 103 Hz: 

1 d / J ( T l , u l = 1 0 3 H z )  - 1 d/J(T~+AT,  u2). 
# dT /l dT 

The AGa~ values of  Fig. 5 are thus calculated 
with a modulus variation evaluated at 104Hz 
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Figure 4 Variation of the operational acti- 
vation volume with temperature (~ = 7 • 
10 -~ sec-~). 

through a shift AT "~ 17K. These lead to T ~ =  
255 -+ 10K and AGa~ = 18kT, which in turn yield 
vale f = 1.3 tO 1.5 X 104 Hz, in good agreement with 
Pmod = 104 Hz. 

As a last result, AG m is found independent 
of  ~: 

AG m = 0.39 + 0.03 eV. 

Though data t reatment  may seem rather tedious, 
note that there is no parameter-fit t ing in it, and 
it is merely aimed at self-consistence of  both  
thermodynamic quantities and experimental  oper- 
ational parameters. 

Experimental  results for ~ = 2 x 10 .4 sec -1 are 
treated in the same way, with the same kind of 
AG a against T diagram, i.e.: AG a proport ional  to 
temperature below Te; AG a = AG m sensibly 
constant beyond T e. Moreover the experimental  
variation o f  Te with ~ can be written: 

e1 = 3.5 x 10-Ssec -1 ~Te~ = 230_+ 10K 

e2 = 2 x l 0 - 4 s e c  -~ -+Te2 = 2 4 5 + I O K  

e3 = 7 x l 0 - 4 s e c  -1 -+Te3 = 2 5 5 - + 1 0 K  

4. Discussion 
As previously proposed [5], we confirm the 
existence of  two distinct mechanisms responsible 
for yielding on both  sides of a transition tempera- 
ture T e. At the lower temperatures a single mech- 
anism is rate-controlling with a stress dependent 
free energy of  activation; moreover the exper- 
imentally determined activation volume V a indi- 
cates a strongly localized movement.  This mode 
is clearly accounted for by a s t ress- temperature  
dependence of the strain rate in the form of 
Equation 1 and suggests a crystal-like plasticity 
through defect glide. 
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ture (~ = 7 • 10-4 sec-1). 



7.5 

=L 
t- 

7.O 

1 Io~ ..: 
. . . . . . . . ~ ~  a 7.8 Hz 

* ~ ~  

360 350 
T(K) 

Figure 6 Variation of the shear 
modulus with temperature after Read 
I15] (logarithmic scale, u in MPa). 

On the other hand, the high temperature 
behaviour is characterized by a constant free 
energy of  activation AG m and by a stress depen- 
dence of  the strain rate mainly limited to the pre- 
exponential term 40. A detailed analysis of the eo 
dependences evoked in Section2.3 with par- 
ticular attention to the problem of internal stresses 
o i shall be given elsewhere. 

Comparison with previously published data in 
the literature is not straightforward but should 
bring forth complementary information. The work 
of  Bauwens-Crowet [13] provides us with a very 
complete set of  data about compressive defor- 
mation of  PMMA over a wide range of  temperature 
and strain rate. As recalled in Section 2.2, a 
modified Ree-Eyr ing analysis is used to account 
for the observed stress-temperature behaviour: 
two independent processes are implied in the 
plastic deformation of  PMMA - an c~ process 
involving large-scale movements of  the chains 
typical of  the glass transition, and a ~ process 
correlated to the first secondary relaxation evi- 
denced by dynamical mechanical tests in this 
material. 

Activation enthalpies are derived from a math- 
ematical fitting of  theological equations to the 
data, and the existence of  any entropy contri- 
bution is ignored in this way. 

Nevertheless we have reconsidered these data 
from our own analysis despite the different origins 
of  the materials [anionic PMMA (EAHP) as 
opposed to commercial Perspex (ICI)]. Transcrip- 
tion of  data in the classical form Oy = f(T) is given 
in Fig. 7 where we show a reasonable agreement of  
shape with our curves (with a 10% difference in 
the magnitude of  stresses at comparable tempera- 

ture and strain rate). Derivation of  activation 
parameters requires some assumptions. Due to the 
lack of  experimental determination of  V0, we 
consider that the unique V0(o) relationship 
exhibited in our measurements, shown in Fig. 8, 
is also valid for Bauwens-Crowet's data. In this 
way, we are able to express Vo, ~o/OT and thus 
&//0 for any stress and temperature level, from 
which we obtain an estimate of  the free energy 
of  activation against temperature for each con- 
sidered strain rate. 

The summary of  Table II expresses the values 
obtained for three particular strain rates, together 
with the temperature shifts taken from Fig. 6 to 
account for the variation of  shear modulus at the 
proper frequency. The results of  Fig. 9 for the 
temperature variation of  the free energy of  acti- 
vation depict the same kind of behaviour as found 
above in our data, with a range of  constant value 
AG m ~ 0.4 -+ 0.04 eV. 

Writing again the variation of T e with 4 leads to 

41 ~ 4  x 10 -s sec -1 --* To: --~240-+ 10K 

4 2 ~ 4 x 1 0 - B s e c  -:  ~ T e 2 " ~ 2 7 0 -  + 1 0 K  

4 3 ~ 4 x 1 0 - 1 s e c  - :  ~ T e 3 ~ 3 0 0 +  10K 

Note that the estimate of  Tel comes from an 
extrapolation of  the oy = f(T) curve at that par- 
ticular strain rate since in the range experimentally 
investigated AG a ~ A G  m is sensibly a constant. 

This whole set of  data allows us to assess two 
final points. The first is a clear confirmation of  the 
existence of  two distinct deformation modes, a 
point recently confirmed on the molecular scale 
in deformed PS also, using the small angle neutron 
scattering technique [ 16]. 

445 



250 i '~ 
~'% % k q ~, . 4 x 1 0  - s  sec -a 

% % ~. I I  4 X 1 0  - 4  s e c  - I  

. ', \ \ o4~!o-, s~ -~ 'l 
t, % o ~, ~, [] 4 X 1 0  - 2  s e e  1 

2 0 0  \ ~ \ ~ \ ~4,,o-1 s~-~ 
~ ~ ~o % e 3 . S x l O - S s e c  "1 A u t h o r s  

% �9 ~t % % 

~ 1 5 0  'k ' . \  \ ~ 

' ,),- -,.o 
~ \  \'\%O\ \\% **\% 

1001 ~,,,~ ~_ \ 
'<:<,,',, ,, 

50 ",'L" - %', 
-..~. -.-, 

,,% 

2'50 300 3'50 
7 (K) 

Figure 7 Variation of the yield stress with 

temperature after Bauwens-Crowet [ 13 ]. 

T A B L E I I Activation parameters (after Bauwens-Crowet [ 13] ) 

T a a V o AH o AG a 
(K) (MPa) (nm 3) (kJ tool-1 ) (kJ m o n  a ) 

gp ~ 4 X 10 -s sec -1 
253 163 
273 123 
295 91 
313 70 
333 5() 

@ ~ 4 X 10 -3 sec "1 

183 379 
203 321 
223 280 
253 210 
273 162 
295 119 
313! 91 
33~ 67 
353 44 

C:p~ 4 X 10 -~ sec -~ 
253 262 
273 216 
295 170 
313 132 
333 97 
353 69 

0.190 63.6 38.5 
0.265 78 40.5 
0.380 86.7 37.6 
0.510 100.2 35.6 
0.760 136.8 39.5 

0,110 28.9 25 
0,115 33.7 27.9 
0,125 40.5 30.8 
0.155 56.8 35,6 
0,205 72.2 39.5 
0.280 89.6 39.5 
0.380 101.1 41.4 
0.510 109.8 36.6 
0,880 154.1 

0.125 41.4 30.8 
0.150 54 34.7 
0.185 72.2 37.6 
0 .250 88.6 38.5 
0.350 102.1 39.5 
0.510 137.8 

Vmo d = 1 kHz 
Ude f < 3 kHz 

Vmo d ~ 10 4 Hz 
(shift a T - 17 K) 
Pde f ~ 2 X 10 4 Hz 

Vmo d - l0  s Hz 
(shift AT ~ 37 K) 
Vde f ~ 1.1 • 10SHz 
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Figure 8 Stress dependence of  
the operational activation 
volume. 

Figure 9 Variation of the Gibbs 
free energy of activation with 
temperature  (from the data 
o f  Bauwens-Crowet [13]) .  The 
encircled square for ~ = 4 X 
10 -Ssec~  is deduced from 
an extrapolat ion of the yield 
s t r e s s - t empera tu re  data of  
Fig. 7. 
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Figure 10 Variation of the logar- 
i thm of  strain rate with the 
inverse of  the transition tem- 
perature Te. I - - I  our data, 
! . . . .  I after Bauwens-Crowet 
[ 13 ]. 1, line with a siope propor- 
tional to / ,Gm; 2, best fit line 
for the whole data. 
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The second point  is that To, the critical tran- 
sition temperature from one mode to the other, 
increases clearly with ~. This is consistent with the 
rate equation writ ten for T = To: 

= e o e x p - - \ k T c  ] 

Fig. 10 gives the experimental  plot  of  ln~  
against T g  I , the slope of  which should be equal to 
AG m ~ 0.4 eV provided that e0 remains constant. 
Although some accordance with this figure can be 
seen from our data, as given in Section 3.2, no 
such agreement can be claimed for the whole set 
of  investigated values, which might mean that  
either some structural evolution or some adiabatic 
h.eating could affect the observed strain rate (i.e., 
~0), especially at high values. 

Whatever it may be, it is of  some interest to 
estimate the strain rate at which T~ "" Tg, which 
in practice means the minimum strain rate allowed 
in order to deform in the defect glide, chain orien- 
tat ion mode in the glass transition range. Fig. 10 
roughly indicates, together with the above theor- 

etical ~(Te) relationship, that figures like ~ 
i0  ~ to 10 2 sec -~ are predicted,  which are obviously 
below the usual processing values. This result 
shows that  usual processing conditions deal prob- 
ably with our low temperature deformation mode. 

To conclude, on the basis of this clearly iden- 
tified plastic deformation behaviour, the question 
of  the relationship of  parameters like AG m and T~ 
to specific molecular features of  the material is 
now raised. We shall report  on this problem in a 

forthcoming paper. 
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